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We investigate the classical chaotic diffusion of atoms subjected to pairs of closely spaced pulses �“kicks”�
from standing waves of light �the 2�-KP�. Recent experimental studies with cold atoms implied an underlying
classical diffusion of a type very different from the well-known paradigm of Hamiltonian chaos, the standard
map. The kicks in each pair are separated by a small time interval ��1, which together with the kick strength
K, characterizes the transport. Phase space for the 2�-KP is partitioned into momentum “cells” partially
separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of
the classical diffusion for a 2�-KP including all important correlations which were used to analyze the experi-
mental data. We find an asymptotic �t→�� regime of “hindered” diffusion: while for the standard map the
diffusion rate, for K�1, D�K2 /2�1−2J2�K�¯ � oscillates about the uncorrelated rate D0=K2 /2, we find
analytically, that the 2�-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due
to the destruction of the important classical “accelerator modes” of the standard map. We analyze the experi-
mental regime 0.1�K��1, where quantum localization lengths L��−0.75 are affected by fractal cell bound-
aries. We find an approximate asymptotic diffusion rate D�K3�, in correspondence to a D�K3 regime in the
standard map associated with the “golden-ratio” cantori.
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I. INTRODUCTION

The “�-kicked particle” ��-KP� is one of the best known
examples of classical Hamiltonian chaos. A particle, or in an
experiment usually a large ensemble of ultracold atoms, is
periodically “kicked” by a series of very short laser pulses
forming standing waves of light. The effective potential takes
a sinusoidal form V�x , t�=−K cos x�N��t−NT�. Here T is the
kicking period, while K is the kick strength, related to the
laser intensity. The classical dynamics for the �-KP are given
by the textbook example of chaos which is the “standard
map” �1�. For large K, the dynamics is characterized by
diffusion in momentum. To lowest order, this represents
a random walk in momentum, hence �p2��D0t, where
D0�K2 /2. The quantum counterpart of the �-KP is the
quantum kicked particle �QKP�. It has also been extensively
investigated in numerous theoretical �see e.g., �2–4�� and ex-
perimental studies in Austin �5�, Auckland �6�, Oxford �7�,
Lille �8�, and Otago �9�.

However, a recent experimental and theoretical study �10�
of cold cesium atoms exposed to closely spaced pairs of
pulses �the 2�-kicked particle� showed chaotic classical dif-
fusion quite different from all other previously studied
�-kicked systems. The two kicks in each pair are separated
by a short-time interval ��T.

The cold cesium atoms are, of course, a realization of the
quantum counterpart of the 2�-KP; like the single-kick QKP
the experiment exhibits the quantum chaos phenomenon of
dynamical localization �2–4�, whereby the quantum diffusion
is arrested at a characteristic time scale, the “break-time,”
t*�K2 /�2. The momentum distribution of the atomic cloud
is “frozen” for times t
 t* with a momentum localization
length �p2��L2. By adjusting � and hence the time scales of
the diffusion correlations, relative to the break-time, it was
found in �10� that the experiment probed distinct diffusive
regimes characterized by different “families” of long-ranged

correlations. In the standard map, the main corrections to the
uncorrelated random walk come from 2- and 3-kick correla-
tions. For the 2�-KP there were also families of terms cor-
relating all kicks. Hence these additional 2�-KP corrections
were termed “global correlations.”

A particularly interesting feature of the 2�-KP is the “cel-
lular” structure of the classical phase space. This structure is
analyzed in detail below, but the basic idea is illustrated in
Fig. 1. An ensemble of particles, all initially with momentum
p= p0 diffuse chaotically, but it is seen that the diffusion is
hindered at “trapping regions” i.e., regions with momenta
p	 ± �2m+1�� /� and m=0,1 ,2 , . . .. For small K� trajecto-
ries spend most of their time stuck in the trapping regions.
Once the particles have escaped, the time scale taken to dif-
fuse freely over the remainder of the cell is negligible.

The experiments in �10� showed that for short and inter-
mediate times ��100 kicks for the experimental parameters�
the diffusion rates depended strongly on p0 and t. Here
we examine also for the first time, to the best of our knowl-
edge, the asymptotic regime �t→�� where the momentum
spread of the atomic cloud is large compared to a single cell.
At very long times momentum-dependent correlations decay
to zero, leaving linear diffusion corrections leading to �p2�
=D�t. Figure 2 provides a summary of the short time and the
asymptotic momentum diffusion regimes in the 2�-KP.

The regime 0.1�K��1 is of special interest because it
corresponds roughly to the experimental parameters and be-
cause a new study of the quantum 2�-KP �11,12� found a
scaling behavior quite different from the usual QKP for this
regime: while for the QKP the localization length L��−1,
for the 2�-KP, L��−0.75. To date this result is not fully ex-
plained. Here, we find D��K3� in this regime.

The structure of the paper is as follows: In Sec. II we
review the classical dynamics of the standard map and the
2�-KP. We explain the cellular structure of the 2�-KP and
we show it is natural to work in rescaled momenta p�= p�.
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This removes effects dependent on the cell size 2� /� and
also lead s to an effective value of the kick strength
K�=K�. We obtain an approximate map for the trapping re-
gions, from which we present a heuristic justification for the
D��K3� behavior which is seen in the K��1 regime
�where fractional power-law behavior was found for the
quantum localization lengths L��−0.75 �11,12��.

In Sec. III we explain how to derive the form of the long-
range correlations which modify the diffusion rate of the
2�-KP. While these results were used to analyze the experi-
ments in �10�, due to space constraints a full derivation could
not be presented there. The emphasis is on time scales com-
parable to the quantum break-time t*: since the diffusive be-
havior is “frozen-in” at this point, even transient �but long-
lived� classical correlations become important for the
quantum dynamics and hence are essential in understanding
the experimental data. This section is the most technical
however, and readers without a detailed interest in classical
correlations can obtain the key points from Figs. 5–7 and
their captions.

In Sec. IV we investigate the asymptotic linear diffusion
regime �t→��. We attempt to derive analytical forms for D�.
For large K�, one of the main results of the present work is
the formula D�	K2�1−J1

2�K�� /1−J0
2�K��� which gives ex-

tremely accurate results compared to numerics �see Fig. 9�. It
is shown from this that the diffusion rate of the 2�-KP can
approach, but not exceed the uncorrelated rate �i.e., the value
expected if the particles executed a random walk�. We at-
tribute this to the absence of accelerator modes �14� which
have been observed experimentally for the usual QKP �15�
but are not found in the 2�-KP. For K��1, although we
show that including higher-order families of long-ranged cor-

FIG. 1. �Top� Surface of section plot for the 2�-KP, K=7,
�=0.05, �=T−�=1.95, for atoms all with initial momentum p0=0.
The cellular structure is evident: momentum space is divided into
regions of fast momentum diffusion separated by porous bound-
aries, i.e., narrow trapping regions where classical trajectories
“stick” for relatively long periods. The trapping regions are at mo-
menta p	 ± �2m+1�� /� where m=0,1 ,2 , . . .: �Bottom� A typical
trajectory of the 2�-KP compared with a standard map trajectory:
the 2�-KP trajectory spends considerable time trapped in a cell
before escaping onto the next; the standard map trajectory looks
like a simple random walk.

FIG. 2. Classical diffusion of the standard map vs the 2�-KP.
Here K=7 in both cases. For the standard map �broken lines� for
K�1, the same diffusion rate �K2 /2 characterizes all time scales
and all starting conditions. For the 2�-KP ��=0.05�, the diffusion
rate D�p0 , t� at first depends on the initial momentum p0 and
time. The inset magnifies the N
50 behavior. For atoms prepared
near the cell boundaries, i.e., p0= ptrap= �2m+1�� /�, where
m=0,1 ,2. . ., we find D�p0= ptrap , t�	0 for the first 20 or so kicks,
but then diffusion speeds up rapidly. For atoms prepared at the
center of the cells, p0=2m�, there is initially a rapid diffusion until
the ensemble reaches the cell boundaries. We see that as t→� �in
this case, for N�200�, the diffusion rate reaches an asymptotic
value D�p0 , t�
D� independent of p0. But D�
D0: the diffusion
rate is always slower than the uncorrelated standard map. The quan-
tum behavior is illustrated by the dotted lines. For effective �= 1

4 ,
the quantum diffusion follows the classical behavior for only a few
kicks before it is arrested by dynamical localization. For smaller
�	 1

30 it follows it for considerably longer.
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relations makes the analytical diffusion tend to the numerical
result we are unable to quantitatively reproduce the
D��K3� behavior. Finally, in Sec. V, we conclude.

II. CLASSICAL DYNAMICS

A. Standard map

The classical standard map is obtained by integrating
Hamilton’s equations for motion in the �-kick potential
V�x , t�=−K cos x�N��t−NT�. One obtains two equations
which may be solved iteratively to evolve the system through
each period T:

pN+1 = pN + K sin xN; xN+1 = xN + pN+1T . �1�

A �-kick is followed by a period of free evolution with con-
stant momentum. With increasing kick-strength K the system
makes a transition from integrable, regular dynamics to
eventual full chaos. For K�1, chaotic momentum diffusion
is unbounded and all chaotic phase-space regions are con-
nected. If we neglect all correlations between impulses, i.e.
assuming �sin xN sin xN��	0 for all kicks, the momentum of
a trajectory in effect represents a ‘random walk’. The corre-
sponding energy of an ensemble of particles grows linearly
with time, since �p2�=D0N	K2 /2N. NB: from Sec. III B
onwards, time is measured in kick-pairs t=N /2; in that case
all diffusion rates are doubled; e.g., �p2��D0t=K2t; hence
the uncorrelated diffusion rate in those units would be given
by D0=K2.

The overall diffusion in the chaotic regime is in general
however not uncorrelated �provided K is not too large�. In
�13�, the effect of short-range correlations between kicks was
investigated theoretically. A more accurate form for the dif-
fusion rate D	K2� 1

2 −J2�K�−J1
2�K�¯� was obtained, where

Jm�x� is a regular Bessel function of the first kind of order m
and argument x. The second term is a 2-kick correction re-
sulting from correlations �sin xN sin xN+2�; the third term is a
3-kick correction resulting from �sin xN sin xN+3�. The effects
of these corrections on the energy absorbed by atoms in
pulsed optical lattices have been experimentally observed
�15�. Note that for the standard map, the correlations repre-
sent a simple change in the magnitude of D; the energy in-
crease is still linear in time. In �16� it was further shown that
in an asymmetric potential, the 2-kick correlations yield a
local correction to the diffusion, i.e., D depends on both time
and the relative initial momentum, p0, between the atoms and
the standing wave of light. This produces a type of chaotic
Hamiltonian ratchet.

B. The 2�-KP

The classical map for the 2�-KP is a straightforward ex-
tension of the standard map:

pN+1 = pN + K sin xN; pN+2 = pN+1 + K sin xN+1

xN+1 = xN + pN+1�; xN+2 = xN+1 + pN+2�, �2�

where � is a very short time interval between two kicks in a
pair and � is a much longer time interval between the pairs. It

is easily seen from the map that atoms for which p0�= �2m
+1�� and m=0,1 ,2 , . . ., experience an impulse K sin x0 fol-
lowed by an impulse 	K sin�x0+��, which in effect cancels
the first. The regime p0	�2m+1�� /� corresponds to the
“momentum-trapping” regions. Conversely in the case
p0�=2m�, a series of near-identical kicks produces initially
rapid energy growth.

Some of the characteristics of the diffusion can be ana-
lyzed by the properties of the classical map in the trapping
regions. Starting from the map �2� with N=0 we rescale all
variables p�= p� and K�=K�, ��=� /��1 to obtain

p1
� = p0

� + K� sin x0; p2
� = p1

� + K� sin x1

x1 = x0 + p1
� ; x2 = x1 + p2

�
�. �3�

We take p0
� = pR

� +�p�, where pR
� is the trapping momentum,

i.e., pR
�m= �2m+1�� and we choose m=0 for the first trapping

region. Inserting the above into 3 we have

p2
� = p0

� + K� sin x0 + K� sin�x0 + � + �p� + K� sin x0�

= p0
� + K� sin x0 + K��sin�x0 + ��cos��p� + K� sin x0�

+ cos�x0 + ��sin��p� + K� sin x0�� . �4�

Assuming small angle identities throughout, cos(f���)	1
and sin(f���)	 f���,

p2
� 	 p0

� − K� cos x0�K� sin x0 + �p��

= p0
� −

K�
2

2
sin 2x0 − K��p� cos x0. �5�

So at the center of the trapping region ��p�=0� the double-
kick map is equivalent to an effective sin 2x single-kick stan-
dard map:

p2
�R 	 p0

� − KR sin 2x0 �6�

where KR=K�
2 /2. Further away from the exact trapping mo-

mentum where �p��K� /2 we have a cosinusoidal map

p2
��p 	 p0

� − K�p cos x0, �7�

where K�p=K��p�.
From these arguments we clearly see that the natural sto-

chasticity parameter of the 2�-KP in rescaled momenta
p�= p� is K�=K�. It is also important to estimate the range of
0
 ��p��
�pmax

� : the trapping regions have a small but finite
width determined by whether there is significant cancellation
between consecutive kicks. Requiring K� sin x0+K� sin�x0

+�+�p��	0 we estimate �pmax
� 	� /6, in other words over

about a sixth of the width of each momentum cell, classical
trajectories experience significant trapping in the momentum
diffusion.

In Figs. 3 and 4 we can see the change from a sin 2x map
at p�	 pR

� , where we observe two sets of stable islands within
the range 0
x
2�, to a cosinusoidal map further out where
the position of islands is shifted by a phase of � /2. Figure 3
compares the detailed structure at p�	 pR

� with a standard
map phase space for which KSM =K2� /2. Figure 4 compares
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an enlarged section of a “side resonance” further away from
pR

� , with a standard map with KSM =K��p. In both cases the
correspondence is clearly visible.

We note that in the standard map there is a transition to
unbounded diffusion for a critical kick strength K=Kcrit	1
where the last invariant curve breaks, leaving a fractal can-
torus structure. This curve corresponds to momenta
p	2�mR, where R is the golden ratio. In �19� it was shown
that for Kcrit
K�4.5 the diffusion rate is D	0.3�K
−Kcrit��. The value �	3 was obtained in �19� from the scal-

ing properties of the classical map near the golden-ratio can-
torus.

From the above, one can hazard a rough order-of-
magnitude justification for a cubic dependence of the
asymptotic diffusion rate D�	K3� for 0.1�K��1 found
numerically �see Sec. IV�. Note that in scaled momenta,
D��K�

3. We note the correspondence between the standard
map and the 2�-KP with K→K�; for small K�, �p�
0, the
form of the map in 7 is dominant, since trajectories spend
most of their time in the trapping regions. In this case, the
scaled critical kick strength K�

crit	�. Taking a representative
value of ��p��	�pmax

� /2=� /12	 1
4 , the effective kick

strength in 7 is 	K� /4. We thus have a diffusion rate in the
trapping regions in terms of rescaled momenta �p�

2�
�0.3�K /4−K�

crit�3t. Then, in unscaled momenta, we would
have D�K3� provided that K is reasonably large compared
with �. While this is by no means a rigorous argument it may
provide some indication of the mechanism underpinning the
K3 dependence. We note the 0.75 exponent in the L��−0.75

scaling is also an exponent associated with scaling properties
of the region around the golden-ratio cantori. We propose
tentatively that this supports the proposal in �11,12� that the
properties of the 2�-KP are intimately connected with the
properties of the golden-ratio cantorus.

III. MOMENTUM DIFFUSION

A. Standard map

The classical diffusion corrections for the standard map
were first obtained by Rechester and White �13� and we fol-
low their notation closely. From the map �1�, the momenta
and positions of a trajectory evolve by a sequence of im-
pulses: pN= p0+SN−1 and xN=xN−1+ p0+SN−1, where
Sl=� j=0

l K sin xj, the initial momentum of an atom is p0 and
the period T is taken to be unity. If we consider an ensemble
of particles with an initial probability distribution in position
and momentum G�x0 , p0 , t=0�, at a later time �measured in
number of kicks t=N� the distribution is given by

G�xt,pt,t� = �
nt=−�

+�

¯ �
n1=−�

+� �
0

2�

dx0dp0G�x0,p0,0�

��
0

2�

dxt ¯ �
0

2�

dx1��pt − p0 − St−1�

���xt − xt−1 − p0 − St−1 + 2�nt� ¯ ��x1 − x0

− p0 − S0 + 2�n1� . �8�

The sums over n1 , . . . ,nt appear because of the periodicity of
phase space in x0 , . . . ,xt. The momentum diffusion rate D is
given by

D = lim
t→�

1

t
��pt − p0�2�t =

1

t
�

0

2�

dxt�
−�

+�

dptG�xt,pt,t��pt − p0�2.

�9�

By taking the initial distribution as G�x0 , p0 ,0�=1/2���p
− p0� �i.e., a uniform spatial distribution with all particles at

FIG. 3. Correspondence between the local phase space at the
resonant momentum pR of a trapping region �K=4.8, �=0.02,
�=1.98� in the double-kicked system �top� and a standard map �bot-
tom� with a kick p2= p0−KR sin 2x0, where KR=K2� /2=0.24 is the
kick strength of the standard map and the period is T=2. Note that
unscaled momenta are used here.

FIG. 4. Correspondence between the outer phase space near the
resonant momentum pR of a trapping region �K=4.0, �=0.02,
�=1.98� in a double-kicked system �top� and a � /2 phase-shifted
cosinusoidal standard map �bottom� p2= p0−K�p cos x0, where
K�p=K��p=0.75 is the kick strength of the standard map and the
period is T=2. Note that unscaled momenta are used here.
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initial nonzero momentum p0� and using the Poisson sum
formula giving the Fourier transform of a � spectrum,
�n��y+2�n�=1/2��meimy, we can rewrite �9� as

D = lim
t→�

1

t �
mt=−�

�

¯ �
m1=−�

�



i=0

t �
0

2� dxi

2�
�St−1�2

�exp��
j=1

t

imj�xj − xj−1 − p0 − Sj−1�� . �10�

To lowest order one can set all mj coefficients to zero, thus
eliminating all exponentials. By using the previous form of S
and integrating over the sine products it is easily seen that
the random walk D0=K2 /2 is recovered. Higher-order cor-
rections to the diffusion rate are obtained by setting certain
mj coefficients to a nonzero value; for the most dominant
corrections �mj � =1,2. The integrals are solved using the re-
lation exp�±iK sin x�=�n=−�

+� Jn�K�exp�±inx� and for correc-
tions to be nonzero, all arguments of exponentials must van-
ish for 2�-periodic integration. This requires pairing
exponentials with the relevant Bessel functions and sine
products included in S.

The main corrections to the standard map are the 2-kick
and 3-kick correlations found in �13� and account in large
measure for the experimental oscillations seen in �15�. The
2-kick correlation is obtained from setting mj = ±1 and
mj−1= �1 and the lowest-order 3-kick correlation from
mj = ±1 and mj−2= �1. From the sin xj sin xj−2 and
sin xj sin xj−3 terms we obtain C2=−K2J2�K� and C3=
−K2J1

2�K�, respectively, as previously. There is also a higher-
order 3-kick correlation, C3�= +K2J3

2�K�, found in �13� de-
rived from mj = ±1, mj−1= �2, mj−2= ±1, and a 4-kick cor-
relation, C4= +K2J2

2�K�, cited in �20� derived from mj = ±1,
mj−1=mj−2= �1, mj−3= ±1. This leads to a total correction to
the diffusion of

D = K2� 1
2 − J2�K� − J1

2�K� + J3
2�K� + J2

2�K�� . �11�

These terms represent the correlations between two given
impulses only, two, three, or four kicks apart. In the next
section we shall see that in the double-kicked system there
are entire families of terms representing correlations between
a given impulse sin xj and every other impulse. Such a global
correlation family does, in fact, exist for the standard map, as
the above method of derivation can be extended to any order
of k-kick correlations between any two given kicks �17�
�sin xj sin xj−k�. For the lowest order we have mj = ±1 and
mj−k+1= �1 and hence Ck=−K2J1

2�K�J0
k−3�K� �k�3�. Clearly

corrections become smaller with increasing k. The 2-kick
correlation is a special case of this global collection of terms.
Note the linear time dependence of all individual k-kick cor-
relations �i.e., �p2��Ckt�. The total correction to the momen-
tum diffusion rate due to all the above k-kick terms is
�k=3

� Ck=−K2�J1
2�K�� / �1−J0�K��. Similar higher-order global

corrections can be found in the standard map of the general
form ±K2�
Jp

m�K�� / �
�1−J0�K��n� for some m ,n , p. How-
ever, in practice, higher-order corrections beyond the basic
terms in �20� can generally be neglected for all K�5 since
they do not alter the diffusion rates significantly. For smaller

K there can be significant differences; however phase space
becomes increasingly regular as K decreases and for K�2
a diffusive approach is not justified. In the double-kick
system the higher-order �long-range� correlations originate
only in the thin trapping layers so a diffusive analysis is
effective even in a regime where long-range correlations are
important.

It should be noted that none of these corrections depends
on the momenta of the atoms in the ensemble; they simply
alter the magnitude of the overall linear rate of energy ab-
sorption for a given K. In any �-kicked system where the
kicking periods are all equal and there are no other asymme-
tries, effects associated with momentum-dependent diffusion
corrections are negligible. This is due to such corrections
including oscillations cos Tp0 on a comparable scale to
the natural width of the initial momentum distribution
�p0�2� of the atomic ensemble. Hence these corrections
average to zero. The 1-kick correlation sin xj sin xj−1 between
consecutive kicks for which a single mj = ±1 only, is such a
correction and is hence absent in the standard map, but will
be seen to contribute significantly to the double-kicked
system, where a much shorter kicking period is introduced.

B. The 2�-KP

For the 2�-KP the notation of the standard map diffusion
equation can be changed slightly to include two closely
spaced kicks for each time step denoted by �1� and �2�; thus
the evolution of momentum is now in terms of pairs of kicks.
Throughout this section we work in unscaled momenta
�p2�=Dt �in rescaled momenta �p�

2�=D�2t�. S takes on the
form St

�2�=�m=1
t �r=1

2 K sin xm
�r� �17� and we indicate explicitly

the two time intervals � and �, defined as previously. Again,
D0 is obtained by setting all mj coefficients to zero, but it
should be noted that as there are now 2t variables, the form
of D0 changes to K2 and hence ��p− p0�2�=D0t=K2t �or in
scaled momenta K�

2t�. Obviously this does not change the
underlying physics; the new formula is only due to a redefi-
nition of time in terms of the number of pairs of kicks,
t=N /2, for even N. Physical time is t��+��.

D = lim
t→�

1

t �
mt

�2�=−�

�

�
mt

�1�=−�

�

¯ �
m1

�2�=−�

�

�
m1

�1�=−�

�



i=1

t �
0

2� dxi
�2�

2�

��
0

2� dxi
�1�

2�
�St

�2��2exp��
j=1

t

�imj
�2��xj

�2� − xj
�1� − ��p0 + Sj

�1���

+ imj
�1��xj

�1� − xj−1
�2� − ��p0 + Sj−1

�2� ���� . �12�

C. Momentum-dependent diffusion of the 2�-KP

The introduction of the short time scale � results in a
significant 1-kick contribution to the diffusion, unlike in any
previously studied �-kicked system. For mj

�2�= ±1 the corre-
lation involves cos p0� and Bessel functions of argument
K�=K�, while for mj

�1�= ±1 the correlation involves cos p0�
and Bessel functions of argument K�. The latter case gives
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negligible contributions as � is the large-time interval be-
tween pairs of kicks, resulting in fast oscillations with p0. We
can effectively set all mj

�1�=0 for all momentum-dependent
correlations—a valid approximation provided ���. The mj

�2�

coefficients will be simply referred to as mj for the remainder
of the paper.

For the case of cos p0�, the sin xj
�2� sin xj

�1� term results in
a kick-to-kick correction

C1t = K2 cos p0��J0�K�� − J2�K����
j=1

t

J0
2j−2�K�� , �13�

where t=N /2 �N even� i.e., time is measured in pairs of kicks
as for all correlations that follow. Kicks at longer times have
weaker correlations than those at short times, however, since
J0�K��→1 as �→0, the time-dependent summation decays
slowly with time and the lifetime of the overall kick-to-kick
correlation may far exceed the active running time of an
experiment. Note however that the correlation does decay to
zero eventually �as for all other momentum-dependent corre-
lations�, i.e., D�p0 , t→��=0. Hence we do not take the infi-
nite time limit in 12; instead we calculate the quantity Ct.
The geometric sum in 13 saturates to 1/ �1−J0

2� after a time
�10/ �K��2 and hence

lim
t→�

C1t = K2 cos p0�
J0�K�� − J2�K��

1 − J0
2�K��

. �14�

For short times C1t grows linearly with time, since for small
K� we have J0�K��	1�J2�K��. We can approximate the cor-
relation to K2t cos p0� and hence the average energy of the
double-kicked particle also grows linearly in this regime.

Figure 5 is the same as in �10� showing a numerical simu-
lation of the energy absorption of an ensemble of 100 000
classical particles at K=7, �=0.05, �=T−�=1.95, as a func-
tion of their initial momenta p0 at various times �measured in
pairs of kicks�. The numerics are superposed with combina-
tions of the time-dependent correlations Cjt presented in this
paper. In Fig. 5�a� the basic cosine behavior of C1 is clearly
visible: atoms with initial momenta p0	2m� /�
=0,125.66, . . ., experience the largest energy absorption,
while those prepared at p0	�2m+1�� /�=62.83,188.50, . . .,
are “trapped” near this initial momentum and experience al-
most no energy absorption. When one looks at Figs. 5�c� and
5�d� something unexpected occurs. The maxima of Fig. 5�a�
slowly turn into near minima, while energy absorption for
atoms near the “trapping” regions increases continuously. A
complete reversal of the initial situation eventually occurs at
longer times, ��p− p0�2��−cos p0�.

The reasons for this lie in considering a whole family of
global correlations similar to the case of the standard map.
The lowest-order global correction originates from mj = ±1,
just as for C1, but this time we look at sin xj

�2� sin xi
�r� terms,

where r=1,2 and i
 j but otherwise arbitrary. In this way
we include all k-kick correlations for k�2, i.e., correlations
between the second impulse in a given pair, sin xj

�2�, and
impulses in all other pairs.

CG1t = �
k=2

2t−1

Ckt = − 2K2 cos p0�J1
2�K���

j=1

t

�2j − 2�J0
2j−3�K�� .

�15�

The corrected energy is now ��p− p0�2�	K2t+C1t+CG1t.
Every individual correlation between two kicks in CG1 is
small compared to the nearest neighbor correlation C1, as
J1

2�K���J0�K��. Importantly however, at a given time the
correlations do not get weaker with increasing k but are
equal in size for any non-nearest neighbor correlation. All
correlations, however, do become weaker with increasing
time and eventually saturate. Summing over t reference im-
pulses and 2j-2 paired correlations for each, results in a total
correction to the diffusion which after a given time becomes
dominant relative to C1. Note the difference in sign between
the 1-kick correlation and all others. The summation in �15�
can be seen to be the derivative of that in �13� and hence

FIG. 5. Agreement between analytical diffusion corrections and
numerical double-kick simulations of 100 000 classical particles at
K=7, �=0.05, �=1.95, for various times measured in pairs of kicks,
t=N /2 where N is the �even� number of individual kicks. Physical
time is t��+�� where � is the short time interval between kicks in a
pair and � is the long time interval between pairs. Energy absorption
is plotted as a function of initial momentum of the particles. The
corrections included in the analytical curve in �a� are C1t, CG1t and
the lowest-order CG2

�1�t term labeled IIa in Table I. In �b� all correla-
tions given in Table I are included. Agreement is excellent at short
times, but higher-order terms are needed at later times. One ob-
serves a sign reversal of the cosine envelope and gradual disappear-
ance of the inverted Poisson peaks at initial minima. Particles ini-
tially prepared in momentum-trapping regions eventually absorb the
most energy. At very long times the lowest order global correlation
CG1 dominates almost completely.
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CG1t = − 4K2 cos p0�J1
2�K��

�
J0�K�� − tJ0

2t−1�K�� + �t − 1�J0
2t+1�K��

�1 − J0
2�K���2 . �16�

For small K� it can be shown by assuming J0�K��	1−K�

and expanding the above to second-order binomial that CG1t
initially increases quadratically at short times:

1 − K� − t�1 − K��2t−1 + �t − 1��1 − K��2t+1

	 1 − K� − t�1 − �2t − 1�K� + �2t2 − 3t + 1�K�
2�

+ �t − 1��1 − �2t + 1�K� + �2t2 + t�K�
2�

= 2K�
2�t2 − t� . �17�

For the parameters in Fig. 5, CG1t saturates to a value
approximately twice that of C1t as t→�.

lim
t→�

CG1t = − 4K2 cos p0�
J0�K��J1

2�K��
�1 − J0

2�K���2 . �18�

The behavior of the 1-kick and all global correlations with
time is illustrated in Fig. 6 �including higher-order Poisson
correlations presented later�. The absolute value ��C � t� of the
maximum energy absorption �where cos p0�=1� with an in-
creasing number of kick pairs is shown. Note that all
momentum-dependent correlations have a nonlinear time de-
pendence and saturate after sufficient time. This means that
the momentum-dependent diffusion rate approaches zero at
long times, where all particles absorb the same amount of
energy irrespective of p0. At short times the effect of CG1 is

negligible compared to C1, but at later times the global cor-
relations dominate the diffusive process, explaining the sign
reversal in Fig. 5�d�. The importance of the global correla-
tions persists for values of K� for which the corresponding
phase space is completely chaotic, a phenomenon not
previously observed.

Figure 5�b� corresponds to a regime where C1 and CG1 are
of similar importance �near the crossing point in Fig. 6�.
Here and in Fig. 5�c� another feature mentioned earlier be-
comes evident. The initial troughs of the cosine in Fig. 5�a�
turn into narrow downward peaks, superimposed onto the
cosine envelope. The origins of these peaks are global cor-
relation terms of higher cosine orders cos np0�, which yield
near � functions at the relevant momenta through
�n�−1�n cos np0�=�m�(p0�− �2m+1��). Such Poisson terms
arise when more than one mj coefficient in 12 is set to ±1,
and � jmj =n, i.e., the sum of the coefficients defines the co-
sine order n. Terms with �mj � 
1 include Bessel functions of
increasingly higher orders; since for �→0, Jn�K��→0 more
rapidly for increasing n
0, such terms can be neglected
here.

Derivations of higher-order global correlations are te-
dious, yet reasonably straightforward. There are two distinct
families, one following the pattern of C1 and the other fol-
lowing CG1, each causing different diffusive behavior. In
both cases the terms of interest involve sin xj

�2� sin xk
�r� where

r=1,2 and k
 j. In the former case mk
�2�= ±1 and correla-

tions involve a J0–J2 factor as for C1. In the latter case
mk

�2�=0 and correlations involve a 2J1 factor as for CG1. The
behavior depends on whether the correlation is with a kick in
a pair associated with a corresponding zero or nonzero mk

FIG. 6. Behavior of global correlations CGnt with number of pairs of kicks. Absolute values �C�t of maximum energy absorption are
shown �cos np0�=1�. �a� shows the comparison between individual correlations at order n=1, including nearest neighbor C1, lowest-order
global CG1, and higher-order Poisson correlations. �b� shows the comparison between different cosine orders n. Trapping terms CGn

�1� are
shown with stars, absorption enhancing terms CGn

�0� with circles. The labels correspond directly to those in Table I showing explicit values at
t=15. Terms are denoted by the cosine order n resulting from the total sum of nonzero mj coefficients, and the order in J1 resulting from the
number of nonzero coefficients. Curves in �b� are made up of the various correlations in Table I for a given order n. Note the linear and
quadratic rise, respectively, for C1 and CG1 at early times. Absorption enhancing terms always overtake their momentum trapping partners
at equal order after sufficient time, but the crossing point shifts to later times as both the order n and O�J1� increases. Overall importance of
terms also decreases for higher orders.
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coefficient. We choose to denote the global Poisson terms as
CGn

�0� and CGn
�1� depending on the family they belong to, where

n is the cosine order. CG1 is the lowest-order global correla-
tion family belonging to CG1

�0�. All Poisson terms have the
following general forms for some m:

CGn
�1�t = �− 1�n−1K2 cos np0�J1�nK���


m

J1
2�mK���

���
m

J0�mK�� − J2�mK��
J1�mK��

��
j

t

�
�m=0

f�j�

�

m

J0
2�m�mK��� ,

�19�

CGn
�0�t = �− 1�n2K2 cos np0�J1�nK��

��

m

J1
2�mK����

j

t

�
�m=0

f�j� ��
m

2�m
J1�mK��
J0�mK��

�
��


m

J0
2�m�mK��� , �20�

where f�j� depends on the particular term: some examples of
Poisson terms are given in the Appendix. Each additional
mk= ±1 coefficient adds two multiplicative J1 factors of pos-
sibly different arguments to both Poisson families, since
Bessel function arguments can now be any integer multiple
of K�, depending on the exact combination of mk coefficients.
This continuously decreases the significance of the correla-
tions, since J1�x�→0 as x→0. Hence the dominant correc-
tions are those of lowest order in J1 �and with few nonzero
mk coefficients�. Note that for Poisson terms other than CG1
various k-kick correlations are of similar but not necessarily
equal strength at a given time t.

For n=1 there are higher-order Poisson terms �in J1� con-
tributing only to the cosine envelope in Fig. 5. These are
shown in Fig. 6�a� in comparison to the lowest-order correc-
tions C1t and CG1t. Again absolute values of maximum en-
ergy absorption are shown. As O�J1� increases, terms be-
come less significant. For all terms, CG1

�0� correlations
eventually become more dominant than CG1

�1� correlations, but
the crossing point shifts to later times with increasing O�J1�.
The difference in saturation energies between the two types
of correlations also becomes smaller.

Figure 6�b� shows the comparison between the combined
n=1 correlation families and higher cosine orders. The be-
havior with increasing n is as before; CGn

�0� correlations al-
ways become more dominant than their partners of equal
order, after sufficient time. CGn

�1� terms increase as �tn, while
CGn

�0� terms increase as �tn+1.
Table I shows the maximum energy absorption values of

the dominant Poisson terms at t=15 �30 kicks� correspond-
ing to Fig. 5�b�. The most significant diffusion corrections
are those for small n and O�J1� and importance of terms
rapidly decreases with higher orders. Terms of O�J1

10� are
about 50 times smaller than the leading corrections.

The momentum diffusion corrections derived here now
enable us to explain the behavior seen in Fig. 5, including the
inverted peaks. The agreement between the numerical data
and the analytical diffusion calculations is generally good. At

very short times �Fig. 5�a�� essentially only C1, CG1, and CG2
�1�

�IIa� contribute to the diffusion and the agreement is excel-
lent. In Fig. 5�b� all of the correlations in Table I have been
included in the analytical curve and good agreement is ob-
tained: the sign of the cosine envelope starts to change and
the inverted peaks slowly vanish at later times. From 19 and
20 one notes that at the same order n, the two types of cor-
relations are of different sign and so oppose each other,
clearly seen in the case of n=1. For n
1 it is found that
while CGn

�1� correlations contribute to increasing the size of the
downward peaks in all cases and thus favor momentum trap-
ping, CGn

�0� correlations result in enhanced energy absorption
for initially trapped atoms. These latter correlations cause the
release of atoms from trapping regions in momentum space.

In Fig. 5�c� the analytical curve has been omitted as a
reasonable agreement cannot be achieved using only the cor-
relations in Table I. Higher-order terms are needed at inter-
mediate times, however at very long times the diffusion is
dominated by CG1, the most important correlation, as can
also be seen in Fig. 6�a�. After saturation, the higher-order
n
1 Poisson correlations result in superimposed upward
peaks at the maxima of the cosine envelope giving the latter
a pointed appearance. The newly found global correlation
families lead to a situation where at long times, when diffu-
sion no longer depends on initial momentum, those atoms
that started in a trapping region have actually gained more
energy than those that started in an enhanced absorption re-
gion in momentum space.

So far this paper has only treated the diffusion problem
classically, but a real experiment would obviously be carried
out in the quantum regime. In �10,12,18� it was shown that
the effects presented here can readily be observed in a quan-
tum experiment, and indeed a range of other interesting fea-
tures were discovered.

As mentioned in the Introduction to this paper, energy
absorption does not continue indefinitely in the quantum
case. The energy saturates to a near-constant value after a
characteristic quantum break time t*�D /�2 �2�, where � is a
scaled Planck constant. The smaller the �, the longer the
system follows the classical predictions �see Fig. 2�.

Figure 7 shows the energy absorption of a cloud of cold
atoms for K=3.3 and �=1, measured in the 2�-KP experi-
ment in �10�. Values of � vary from 0.045 to 0.160 such that
K�=0.1485, 0.3102, and 0.528. The resemblance to Fig. 5 is
evident and is due to these different values of K� which con-

TABLE I. Diffusion correlations shown in Fig. 6.

Term mj pattern O�J1� Value �t=15�

Ia �C1 ,CG1� ±1 0,2 +472,−355

Ib �CG1
�1� ,CG1

�0�� ±1, ±1, �1 4,6 +100,−33

Ic �CG1
�1� ,CG1

�0�� ±1, ±1, ±1, �1, �1 8,10 +14,−4

IIa �CG2
�1� ,CG2

�0�� ±1, ±1 2,4 −227, +113

IIb �CG2
�1� ,CG2

�0�� ±1, ±1, ±1, �1 6,8 −59, +24

IIIa �CG3
�1� ,CG3

�0�� ±1, ±1, ±1 4,6 +82,−39

IIIb �CG3
�1� ,CG3

�0�� ±1, ±1, ±1, ±1, �1 8,10 +29,−12

IVa �CG4
�1� ,CG4

�0�� ±1, ±1, ±1, ±1 6,8 −29, +14

M. M. A. STOCKLIN AND T. S. MONTEIRO PHYSICAL REVIEW E 74, 026210 �2006�

026210-8



trol the relative importance of diffusion correlations. It
should be noted that in experiments, � and � are usually
dimensionless scaled quantities, such that �=� /T, where �
is the physical time between kicks in a pair and T is the
physical period of the double-kick system. The measure-
ments are all taken well after the break time t*	D0�30,
when the energies have saturated and no further evolution
takes place. The experimental behavior then depends on
which diffusion corrections are dominant at the break time.
As K� decreases the time needed for the global diffusion
corrections to dominate over C1 increases, hence in Fig. 7�a�
the system is arrested at a time where C1 is still hugely
dominant. In Figs. 7�b� and 7�c�, however, K� is larger and
the global correlations CGn become more important when the
break time is reached. In these cases the Poisson peaks and
sign reversals for the cosine envelope are clearly seen. Fig-
ures 7�d�–7�f� show C1 and CG1 for the parameters in �a�–�c�,
and the crossing point, indicating the point at which the glo-
bal correlations become dominant, clearly shifts from
tG
 t* to tG
 t* at higher K�. Saturation values of correla-
tions also decrease with increasing time between the double
kicks, which results in the limit of the standard map where
�=�	2 and there is no momentum-dependent diffusion at
all. Note that at very high values of K, and hence K�, corre-
lations become less significant due to large Bessel arguments
�Jn�x�→0 as x→��.

From the momentum distribution of the atomic ensemble
one can also observe the trapping regions and the effects of
the global diffusion corrections. After the quantum break
time, the distribution of the usual �-KP localizes exponen-
tially in the momentum basis, causing the characteristic

triangular shape on a logarithmic plot. For the 2�-KP the
basic exponential shape has a “staircase” superposed onto it
�see �11,12��.

IV. ASYMPTOTIC DIFFUSION: t\�

Classically, the momentum-dependent diffusion in the
2�-KP does not continue indefinitely but is only a transient
effect at short and intermediate times. At very long times in
the asymptotic regime, momentum-dependent correlations
saturate and the diffusion rate is the same for all starting
conditions p0. In this regime diffusion is controlled by linear
corrections independent of the initial momentum, as for the
standard map, which decrease in magnitude with increasing
separation between kicks but remain constant in time.

Such corrections are obtained from Eq. �12� in the case
where the total sum of mj coefficients is zero; hence n=0 and
cos np0�=1. It is found that all these corrections are of op-
posite sign to the random walk D0=K2 and hence lower the
overall rate of energy absorption for all values of K�. This is
due to the absence of terms for which �mj

�2��=2 or mj
�1��0.

Although for momentum-independent correlations, terms can
also depend on the long time scale � between kick pairs, i.e.,
mj

�1�= ±1, similar to the standard map case ��	T�, such
terms are far less significant than the dominant �-dependent
corrections. Hence k-kick correlations for even k, such as the
important 2-kick correction ��J2�, are effectively absent in
the 2�-KP The general form of correlations dependent on �
only is

FIG. 7. Experimental realization of the 2�-KP with a cloud of cold cesium atoms, pulsed periodically by pairs of laser kicks. The graphs
show the energy absorption of the ensemble for K=3.3, �=0.0450.094,0.160, and �=1. Measurements are taken after the quantum break
time, t*�30, when the energies have saturated and momentum diffusion has been terminated. Varying K� means that the time scale tG on
which the global diffusion corrections become dominant varies in relation to t*. In �a� t*
 
 tG and the system is arrested in a regime where
C1 dominates, corresponding to 5�a�. Atoms prepared in the trapping regions remain trapped and absorb no energy. In �b� t*	 tG and the
effects of the global corrections CGn become visible: inverted Poisson peaks appear at trapping momenta and a partial sign reversal of the
overall cosine envelope is seen. In �c� finally, t*
 tG and the system follows classical energy trajectories long enough for the global
corrections to become dominant. Trapped atoms start to absorb energy and the diffusion in other parts of the phase space approaches a
�−cos p0�� relationship. �d�–�f� show the behavior of C1 �stars� and CG1 �circles� with time for the values of K� in �a�–�c� ��=2−��. We can
consider tG to be near the crossing point of the two correlations shown. This clearly shifts to earlier times as K� increases.
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CG0t = − K2�

m

J1
2�mK����

j

t

�
�m=0

f�j�

�

m

J0
2�m�mK��� .

�21�

Note the difference in sign in comparison to D0 and absence
of Bessel functions of order p
1. Note further that although
we denote these correlations by Ct, the actual diffusion rate
D�t→�� is nonzero and can be found by taking the infinite
time limit of 21. From the lowest-order correlation for which
mj = ±1, mk= �1 �k
 j� we obtain a global family similar to
the case of the standard map, including the usual lowest-
order 3-kick correlation

CG0t�±1, � 1� = − K2J1
2�K���

j=2

t

�
�=0

j−2

J0
2��K�� �22�

and hence, for K��1,

D � K2�1 −
J1

2�K��
1 − J0

2�K��
� . �23�

Note the similarity to the lowest-order global family
Ck presented for the standard map earlier. The minor
difference of a J0

2 factor stems from the fact that this
family includes only the case of odd k. Higher-order
corrections for the 2�-KP have the asymptotic form
D=−K2
m�J1

2�mK��� / �1−J0
2�mK���n for some m ,n.

Figure 8�a� shows the effect of the two lowest-order
global correlation families on the energy absorption of
the kicked particles for the same parameters as in Fig. 5
�K�=0.35�. The change from the K2 random walk is seen to
be very significant. It should be noted that at early times CG0t
behaves nonlinearly; however, this is only due to the inclu-
sion of entire global families of correlations between all
kicks. As time increases, more correlations are included in

the formula, however, each individual k-kick correction still
has a linear time dependence, as for all correlations indepen-
dent of momentum. At long times the energy increase be-
comes linear again, since corrections become weaker with
increasing k.

Figure 8�b� shows absolute values of the two corrections
included in the analytical curve in 8�a� in comparison to
D0=K2. It is seen that the lowest-order term given in 22
makes up the vast majority of the diffusion correction. The
second term �given in the Appendix� is derived from a se-
quence of mj = ±1, ±1, �1, �1 and is hence O�J1

6�. The
agreement between the analytical and numerical data in 8�a�
is reasonable and can be improved by including higher-order
terms.

Figure 9 shows a comparison of the ratio D /D0 between
the standard map and the 2�-KP. Figure 9�b� shows the well-
known diffusion behavior for the case of the standard map or
�-KP where D0=K2 /2 and D is given by 11 �this curve was
first presented in �13� but without the C4=K2J2

2�K� term�.
D /D0 vs K is shown and the behavior is oscillatory around
the usual random walk with some regimes of enhanced and
some of hindered diffusion. At very large K the diffusion
approaches the random walk value asymptotically. As was
mentioned in Sec. II, higher-order global corrections do not
alter the shape of the curve in 9�b� appreciably. For K�5 a
linear relationship is found where D�K3, however as K is
decreased the system becomes increasingly regular and the

FIG. 8. Effect of momentum-independent corrections to the
overall rate of energy absorption by the 2�-KP. �a� shows the sig-
nificant decrease in energy absorption from the basic random walk,
D0=K2. The analytical curve is composed of the corrections in �b�
and shows reasonable agreement with the numerical data. Para-
meters are as in Fig. 5. Absolute values of the correlations are
plotted in �b�, so the analytical curve in �a� is K2t−CG0t�±1, �1�
−CG0t�±1, ±1, �1, �1�.

FIG. 9. �a� The diffusion rate for the 2�-KP �shown as a func-
tion of stochasticity parameter K�=K�� never exceeds the “random
walk” rate D0; the uncorrelated rate �for time counted in kick pairs�,
is D0=K2. The figure shows that for large K�, there is an excellent
agreement between Eq. �23� and numerics; in the regime of cold
atom experiments, K��1, dominated by fractal phase-space struc-
tures, agreement with the numerical result is improved by including
higher-order correlations �O�J1

n�� but remains nonquantitative. Note
that the numerical result D	K3� /2 is represented by a straight
�dashed� line since D /D0=K� /2. �b� Illustrates the “textbook” stan-
dard map diffusion rate D	K2 /2�1−2J2�K�¯ � obtained by Re-
chester and White �13�. The rate oscillates about the random walk
value and the maxima occur where classical accelerator modes are
important.
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diffusion corrections no longer describe the behavior
accurately.

Figure 9�a� shows D /D0 vs K� for the 2�-KP, where
D0=K2 �in unscaled momenta� and a series of analytical
curves are shown, including an increasing number of global
correction families, in comparison to the numerically ob-
tained diffusion behavior. The analytical curves are denoted
by the maximum order of J1�mK�� included. The behavior
for large K� is found to be different from the case of the
standard map �seen in 9�b��: for the 2�-KP the diffusion is
always “hindered” compared to the random walk; i.e.,
D
D0 for all K�, while for the standard map, there are
maxima in the diffusion where D
D0. For the latter, the
maxima correspond to values of the stochasticity parameter
K�2�M, where M is an integer. These coincide with the
appearance of small transporting islands �i.e., trajectories in
these islands gain �2� in momentum for each kick�, the
so-called accelerator modes, see e.g., �14�; the surrounding
chaotic phase space generates Levy flights. This regime of
anomalous diffusion was observed in the experiments in
�15�. We have found no evidence whatsoever of any accel-
erator modes for K�2�M; we cannot exclude a small con-
tribution from other higher-order accelerator modes, but the
small maxima of the D /D0 in the 2�-KP correspond to zeros
of J1�K�� and the diffusion is bounded from above by the
random walk rate. Asymptotically, D→D0 as K�→� as all
correlations decay away completely.

For small K� we again have a near-linear section where
D�K3� �or D�K�

3 in scaled momenta p�� as mentioned in
Sec. II. The agreement between analytical and numerical re-
sults is excellent for K��2, where even the lowest-order
�O�J1

2�� correlations are sufficient to reproduce the diffusion
curve. As K→0 agreement can be improved by including
successively higher-order corrections.

V. CONCLUSIONS

We have analyzed the chaotic classical diffusion of the
double �-KP. Although a straightforward extension of the
standard map, this system exhibits a rich variety of new fea-
tures.

One motivation of the present work was to further under-
stand the behavior observed in experiments �10� and to
present a more detailed derivation of the formulas in �10�.
The experiment probed regimes where the classical diffusion
is highly nonlinear in time and depends on initial conditions,
but which were nevertheless sufficiently generic to be ana-
lyzed in terms of corrections to a diffusive process. This is in
contrast to the standard map, where long-range correlations
are a feature of the near-integrable regime where most tra-
jectories are stable so an analysis based on diffusive pro-
cesses is not useful. Although the nonlinear regime of the
2�-KP is, classically, transient, it is sufficiently long-lived
��100–200 kicks� so that it is the only regime sampled by
the quantum dynamics of the experiment in �10�.

Quantum studies of the 2�-KP in the regime 0.1�K�

�1 were originally undertaken because they coincide
roughly with the experimental values. However, the theoret-
ical studies then revealed novel quantum behavior in the en-

ergy level statistics and the fractional scalings L��−0.75 of
the quantum localization lengths �11,12�. It was suggested
that the global quantum properties of the 2�-KP are, in this
regime, intimately connected with the local scalings around
the neighborhood of the golden-ratio cantori, as transport
from cell to cell is limited by the former. The K3 dependence
of the diffusion rate found here lends further credence to this
suggestion, as a cubic dependence is a feature of diffusion
near golden-ratio cantori �20�. Unfortunately, as for the stan-
dard map, the cubic behavior cannot be derived analytically.
At best, it was seen that adding successively higher orders of
diffusive corrections makes the analysis tend towards the
numerics.

One of the main results here is contained in Fig. 9, and
Eq. �23�: in the regime K��1, where effects of cantori and
trapping are negligible. Here, the diffusion of the 2�-KP fol-
lows a simple analytical expression but still differs strikingly
from the standard map, in that it never exceeds the random
walk rate �though it can equal it�. The 2�-KP has no 2-kick
correction �the J2�K� term which in the standard map roughly
“tracks” the accelerator modes�. We have found no numerical
evidence for the accelerator mode behavior. Hence, although
there is much evidence for nonlinear diffusion �of finite
though prolonged duration� in the 2�-KP, the major source
of anomalous diffusion seen in the chaotic standard map is,
in fact, absent; in this sense, the 2�-KP diffusion is closer to
the random walk �as shown in Fig. 9� once trapping by
cantori becomes unimportant.

Finally, it is worth noting the potential applications of the
2�-KP, in particular, as a velocity-selective atom filter in, for
example, devices such as an atom chip. Narrow trapping re-
gions could be used to select atoms with p0	� /�, while
others would accelerate through the system nearly unper-
turbed. This could also be used to create very pure Bose-
Einstein condensates, if located in a trapping region. A much
stronger momentum-dependent effect is seen in the double-
kick system than in the previously studied perturbed-period
system �16�. Other applications in atomic manipulation may
also be possible given further investigations.
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APPENDIX: GLOBAL CORRELATION FAMILIES

Exact forms of two of the momentum-dependent global
correlation families presented in this paper are given here as
examples, as well as one further example of a higher-order
CG0 correlation term. Note that the mj

�2� patterns given here
and also shown in Table I correspond to the sum of correla-
tions with such nonzero coefficients, including all possible
permutations. The sum of the coefficients defines the cosine
order n and permutations for which the partial sum, when
coefficients are added from the highest to lowest j, is zero,
lead to zero-valued correlations.

mj = ±1, ±1, �1 �Term Ib in Table I�
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CG1
�1�t = − K2 cos p0�J1

3�K��J1
2�2K���3

J0�K�� − J2�K��
J1�K��

+ 2
J0�2K�� − J2�2K��

J1�2K��
�

��
j=3

t

�
�=0

j−3

J0
2��K��J0

2�j−3−���2K�� , �A1�

mj = ±1, ±1 �Term IIa in Table I�

CG2
�0�t = 2K2 cos 2p0�J1�2K��J1

2�K���
j=2

t

�
�=0

j−2 �2�
J1�K��
J0�K��

+ 2�j − 2 − ��
J1�2K��
J0�2K��

�J0
2��K��J0

2�j−2−���2K�� , �A2�

mj = ±1, ±1, �1, �1 �second higher-order correlation term
in Fig. 8�b� and included in Fig. 9�a��

CG0t�±1, ± 1, � 1, � 1� = − K2�J1
4�K��J1

2�2K���

��
j=4

t

�
�1=0

j−4

�
�2=0

j−4−�1

�
�3=0

j−4−��1+�2�

�J0
2�1�K��J0

2�2�2K��J0
2�3�K�� .

�A3�

Other Poisson and higher-order global correlation terms
have similar forms and are derived in the same way as the
above from 12. Note that the time behavior �CGn

�1� terms in-
crease as �tn, while CGn

�0� terms increase as �tn+1� for small
K� and t can be shown for all terms by evaluating the se-
quence of geometric sums and expanding powers binomially
to the appropriate order. Saturation values and asymptotic
behavior are also straightforward to evaluate by taking the
limit as t→�.
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